10 research outputs found

    Experimental Implementation of the Deutsch-Jozsa Algorithm for Three-Qubit Functions using Pure Coherent Molecular Superpositions

    Get PDF
    The Deutsch-Jozsa algorithm is experimentally demonstrated for three-qubit functions using pure coherent superpositions of Li2_{2} rovibrational eigenstates. The function's character, either constant or balanced, is evaluated by first imprinting the function, using a phase-shaped femtosecond pulse, on a coherent superposition of the molecular states, and then projecting the superposition onto an ionic final state, using a second femtosecond pulse at a specific time delay

    The manipulation of massive ro-vibronic superpositions using time-frequency-resolved coherent anti-Stokes Raman scattering (TFRCARS): from quantum control to quantum computing

    Full text link
    Molecular ro-vibronic coherences, joint energy-time distributions of quantum amplitudes, are selectively prepared, manipulated, and imaged in Time-Frequency-Resolved Coherent Anti-Stokes Raman Scattering (TFRCARS) measurements using femtosecond laser pulses. The studies are implemented in iodine vapor, with its thermally occupied statistical ro-vibrational density serving as initial state. The evolution of the massive ro-vibronic superpositions, consisting of 1000 eigenstates, is followed through two-dimensional images. The first- and second-order coherences are captured using time-integrated frequency-resolved CARS, while the third-order coherence is captured using time-gated frequency-resolved CARS. The Fourier filtering provided by time integrated detection projects out single ro-vibronic transitions, while time-gated detection allows the projection of arbitrary ro-vibronic superpositions from the coherent third-order polarization. Beside the control and imaging of chemistry, the controlled manipulation of massive quantum coherences suggests the possibility of quantum computing. We argue that the universal logic gates necessary for arbitrary quantum computing - all single qubit operations and the two-qubit controlled-NOT (CNOT) gate - are available in time resolved four-wave mixing in a molecule. The molecular rotational manifold is naturally "wired" for carrying out all single qubit operations efficiently, and in parallel. We identify vibronic coherences as one example of a naturally available two-qubit CNOT gate, wherein the vibrational qubit controls the switching of the targeted electronic qubit.Comment: PDF format. 59 pages, including 22 figures. To appear in Chemical Physic

    Development status of high power fiber lasers and their coherent beam combination

    No full text

    Introduction

    No full text

    Analysis and control of small isolated molecular systems

    No full text

    Imaging Atomic Orbital Polarization in Photodissociation

    No full text

    Theoretical Exploration of Ultrafast Dynamics in Atomic Clusters: Analysis and Control

    No full text
    corecore